
Antimicrobial Resistance: A Broad-Spectrum Health Crisis

Christine Fedorchuk, PhD Microbiologist, ATCC

Credible Leads to Incredible™

- World's largest, most diverse biological materials and information resource for microbes – the "gold standard"
- Innovative R&D company featuring gene editing, microbiome, NGS, advanced models
- cGMP biorepository

- Partner with government, industry, and academia
- Leading global supplier of authenticated cell lines, viral and microbial standards
- Sales and distribution in 150 countries, 19 international distributors
- Talented team of 450+ employees, over onethird with advanced degrees

Overview

Introduction:

What antimicrobial resistance is

History:

- Antibiotics and resistance in history
- Key events in modern medicine
- Current state of affairs

Mechanisms:

- How antibiotics work
- How resistance works
- How resistance spreads

Summary:

Urgent threats

What Is Antimicrobial Resistance?

Antimicrobials: a drug or other agent used to treat infectious disease by inhibiting growth or killing the microorganism responsible for infection.

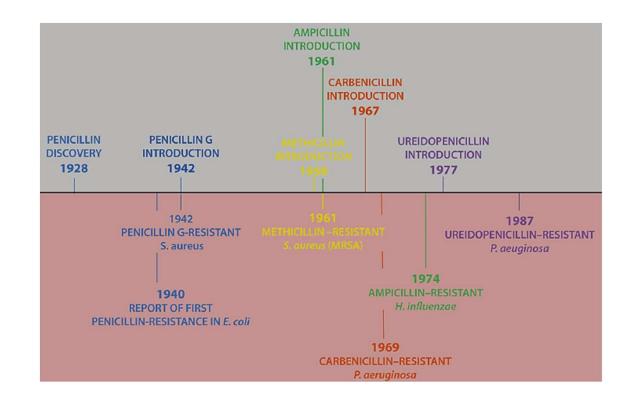
Antibacterials · Antivirals · Antifungals · Antiparasitics

Antimicrobial resistance (AMR): ability of a microorganism to avoid the effects of antimicrobials

Introduction

Antibiotics and Resistance Throughout History

Resistance has been with us all along


- Antimicrobial compounds are produced by bacteria, fungi, and plants - Streptomycin: a potent, broad-spectrum antibiotic produced by Streptomyces bacteria (1),(2)
- Co-evolution of resistance: offense and defense
 - Late Pleistocene permafrost: 30,000 year old gene sequences with homology to resistance genes for tetracyclines, glycopeptides, and β -lactam antibiotics ⁽³⁾
- Human medicinal use is ancient
 - Artemisinin: antimalarial compound produced by Artemisia annua plants (sweet wormwood) used in China for thousands of years ⁽⁴⁾
 - Tetracyclines: broad-spectrum antibiotics produced by a variety of *Actinomycetes* soil bacteria; evidence of use found in human skeletal remains in ancient Sudanese tribes almost 2,000 vears old (5),(6)

(1) Clardy, J. Curr Biol. June 9; 19(11): R437-R441 (2009) (2) Perry, J. Cld Spg Harb Perspect Med 6:a025197 (2016) (3) D'Costa, V., et al. Nature 477, 457-461 (2011) (4) Brown GD. Molecules. Oct 28;15(11):7603-98 (2010) (5) Kobayashi, T., J Mol Evol (2007) 65:228-235 (2006) (6) Nelson, M., Ann. N.Y. Acad. Sci. 1241:17–32 (2011) ATCC°

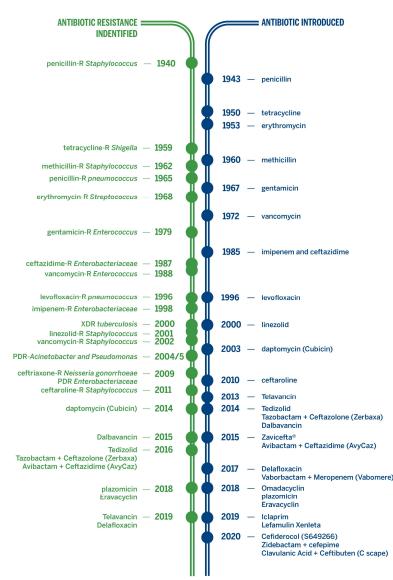
Modern Medicine: The Antibiotic Era

- Penicillin was first discovered in 1928 and developed for clinical use by 1940
- Penicillin was in wide use in many areas by 1940-1945, and reports of resistance in *Staphylococcus aureus* strains began in hospitals in 1942
- Methicillin, a 2nd-generation βlactam compound, was introduced in 1961; resistance was reported by 1962
- S. aureus strains, previously resistant to penicillin, developed additional mechanisms for resistance and became MRSA

Summary

Introduction

History

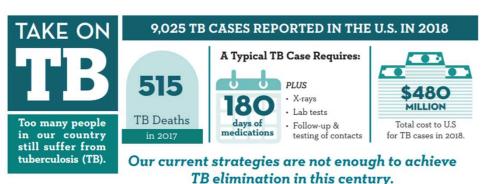

Antibiotics

Resistance

Events of Note

Key Events:

- 1962: Methicillin-resistant Staphylococcus aureus (MRSA)
- 1968: Erythromycin resistant Streptococcus pneumoniae
- 1988: Vancomycin-resistant Enterococcus
- 2000: Extensively-drug resistant Tuberculosis (XDR TB)
- 2002: Vancomycin-resistant Staphylococcus aureus
- 2004: Pan-drug resistant (PDR) Acinetobacter and Pseudomonas
- 2009: Pan-drug resistant (PDR) Enterobacteriaceae



www.amr.biomerieux.com

Spread

Key Examples – Mycobacterium tuberculosis

- 2nd most common cause of death due to infection after HIV/AIDS
- Estimated mortality in 2018: 1.5 million deaths globally
- Estimated cases globally: 1.8 billion people
- Cases of resistant infections in 2018: 0.48 million
- Likelihood of treatment success:
 - Drug-Susceptible TB: 83%
 - MDR-TB: 54% (resistant to at least two frontline antibiotics)
 - XDR-TB: 30% (resistant to at least two frontline and two second-line antibiotics)
 - XDR-TB has been isolated in more than 127 countries

www.cdc.gov ATCC

Summary

8

Introduction

History

Antibiotics

Resistance

Key Examples – Mycobacterium tuberculosis

- 2nd most common cause of death due to infection after HIV/AIDS
- Estimated mortality in 2018: 1.5 million deaths globally
- Estimated cases globally: 1.8 billion people
- Cases of resistant infections in 2018: 0.48 million

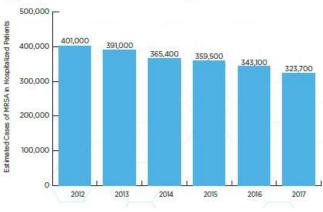
- Likelihood of treatment success:
 - Drug-Susceptible TB: 83%
 - MDR-TB: 54% (resistant to at least two front-line antibiotics)
 - XDR-TB: 30% (resistant to at least two front-line and two second-line antibiotics)
 - XDR-TB has been isolated in more than 127 countries

Introduction

History

Antibiotics

Resistance


Key Examples – Methicillin-resistant Staphylococcus aureus (MRSA)

 Causes infections in the skin and softtissue (SSI), the endocardium, bloodstream, respiratory tract, bones, joints, and central nervous system

- Estimated cases do not include many SSIs
- MRSA infection rates were slowing, but progress has stalled

Cases represented do not include the many skin infections that happen, but are not cultured and diagnosed.

Present Day: The Post-Antibiotic Era

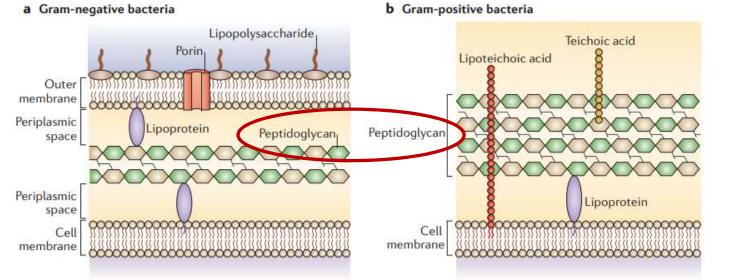
- Antimicrobials are necessary for infections and to ensure the safety of modern medical procedures
 - 1.7M adults develop sepsis every year in the US
 - 1.2M cesarean sections were performed in 2017
 - 30M people have diabetes and are at higher risk for infection
 - 33,000 organ transplants were performed in 2016
 - 500,000 people received dialysis treatment in 2016
 - 650,000 people receive cancer chemotherapy each year
- Superbugs' and the new era
 - Multidrug resistance: MDR pathogens resistant to multiple antimicrobials through acquired mechanisms
 - Pan-drug resistance: PDR pathogens resistant to all available antimicrobials through acquired mechanisms (untreatable)

CDC. 2019 AR Threats Report. CDC, HHS (2019)

How Antibiotics Work

Classification by subcellular target

- Cell wall
- Cell membrane
- Protein biosynthesis
- Transcription
- Translation
- Other pathways


Target	Class	Sub-Class	Mechanism of Action	Compounds (Examples)	
Cell Wall	β-lactams	Carbapenems Cephalosporins Monobactams Penicillins	Peptidoglycan biosynthesis inhibition	Ampicillin	
Cell Wall	Other	Glycopeptides Novel Classes	Inhibition of one of several steps in peptidoglycan biosynthesis	Vancomycin	
Cell Membrane	Cyclic Peptides	Polymyxins	Disrupts membrane permeability	Colistin	
Protein Biosynthesis	30S	Aminoglycosides Tetracyclines	Inhibition of translation through 30S rRNA	Streptomycin	
Protein Biosynthesis	508	Macrolides Lincosamides Streptogramins Chloramphenicol	Inhibition of translation through 50S rRNA	Erythromycin	
Protein Biosynthesis	Peptide Bond Formation	Oxazolidinones Mupirocin	Inhibition of translation through initiation or elongation disruption	Linezolid	
Nucleic Acids	Transcription	Rifamycins	Inhibition of transcription through RNA polymerase disruption	Rifampin	
Nucleic Acids	DNA Replication	Quinalones	Inhibition of the DNA replication fork through disruption of type II topoisomerases	Ciprofloxacin	
Nucleic Acids	DNA Structure	Nitroimidazoles Nitrofurans	Disruption of DNA structure through the production of free radicals	Metronidazole	
Other Pathways	THF Synthesis	Sulfonamides Trimethoprim	Inhibition of tetrahydrofolic acid (THF) synthesis	Sulfamethoxazole	

How Antibiotics Work: Cellular Integrity

- Cell walls: Gram-positive and Gram-negative bacteria
- Peptidoglycan synthesis
- Membrane permeability

Cell Wall	β-lactams	Carbapenems Cephalosporins Monobactams Penicillins	Peptidoglycan biosynthesis inhibition	Ampicillin
Cell Wall	Other	Glycopeptides Novel Classes	Inhibition of one of several steps in peptidoglycan biosynthesis	Vancomycin
Cell Membrane	Cyclic Peptides	Polymyxins	Disrupts membrane permeability	Colistin

Brown, L., Nat Rev Microbiol. Oct;13(10):620-30 (2010)

How Antibiotics Work: Carbapenems

 Carbapenems: Activity of Imipenem in *Escherichia* coli

Introduction

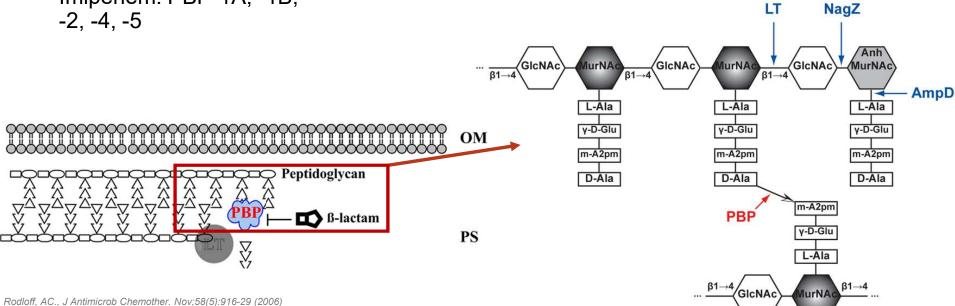
History

Antibiotics

Resistance

Spread

Summary


14

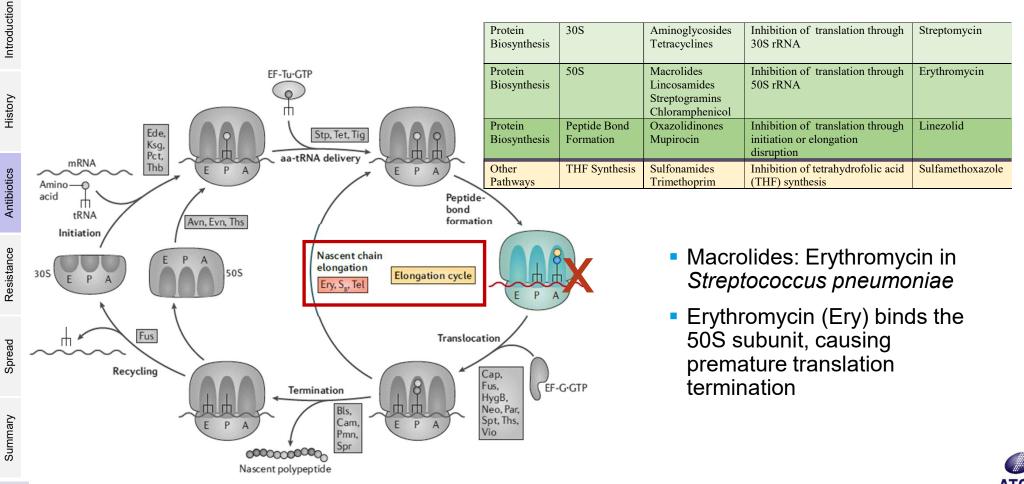
 Penicillin Binding Protein (PBPs) targets of Imipenem: PBP-1A, -1B, -2, -4, -5

Zeng X, Lin J. Front Microbiol. May 22;4:128 (2013)

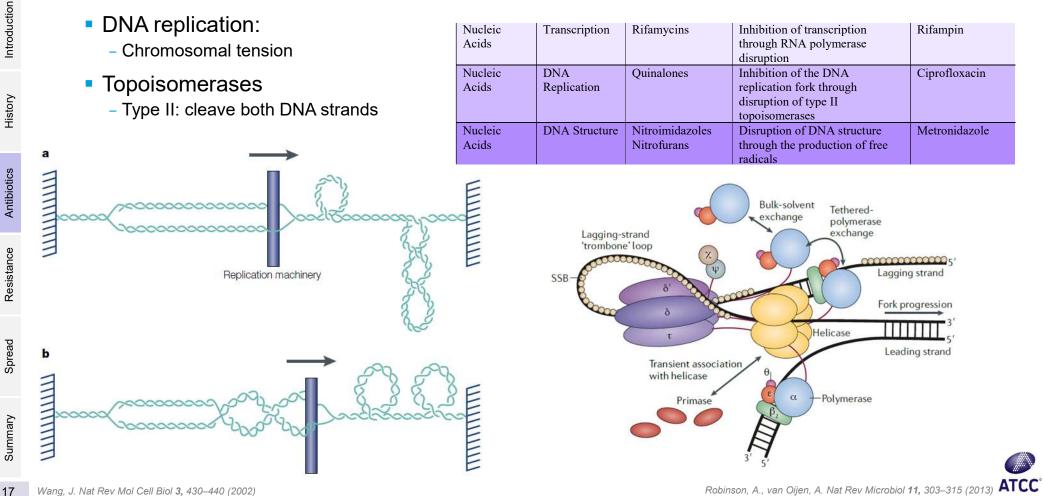
Brown, L., Nat Rev Microbiol. Oct;13(10):620-30 (2010)

Cell Wall	β-lactams	Carbapenems Cephalosporins Monobactams Penicillins	Peptidoglycan biosynthesis inhibition	Ampicillin
Cell Wall	Other	Glycopeptides Novel Classes	Inhibition of one of several steps in peptidoglycan biosynthesis	Vancomycin
Cell Membrane	Cyclic Peptides	Polymyxins	Disrupts membrane permeability	Colistin

How Antibiotics Work: Protein Biosynthesis

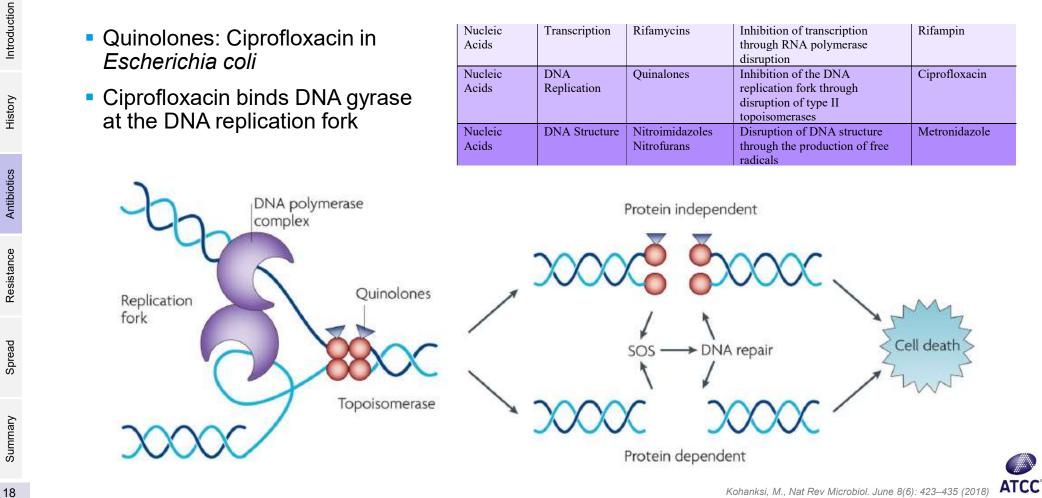

15

Wilson, D., Nat Rev Microbiol 12, 35–48 (2014)


How Antibiotics Work: Macrolides

16

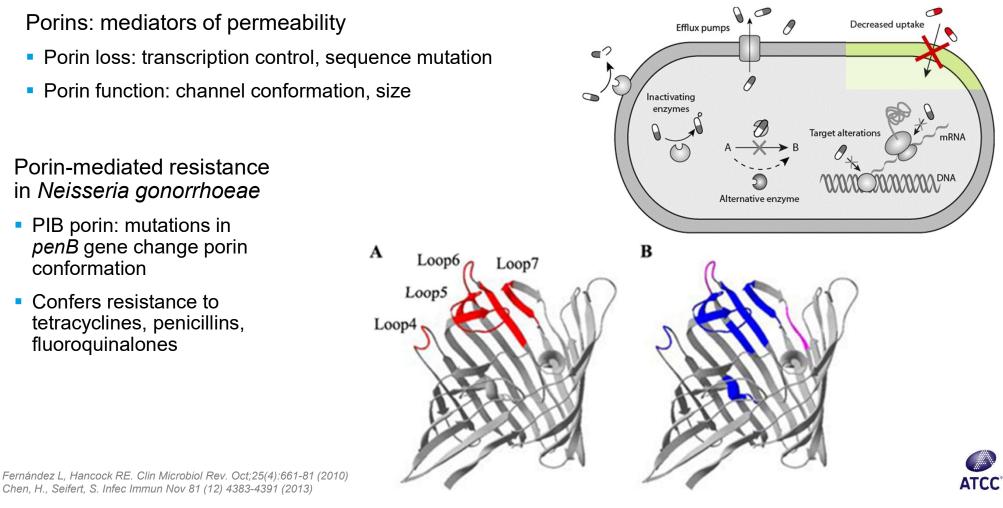
Wilson, D., Nat Rev Microbiol 12, 35–48 (2014)


How Antibiotics Work: Nucleic Acids

Wang, J. Nat Rev Mol Cell Biol 3, 430-440 (2002)

Robinson, A., van Oijen, A. Nat Rev Microbiol 11, 303–315 (2013)

How Antibiotics Work: Quinolones


Kohanksi, M., Nat Rev Microbiol. June 8(6): 423-435 (2018)

Types of Resistance Mechanisms

How Resistance Works: Decreased Influx

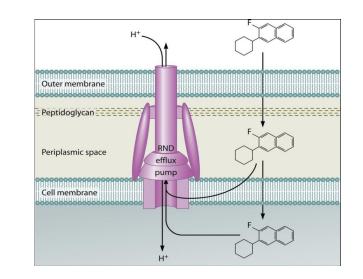
Chen, H., Seifert, S. Infec Immun Nov 81 (12) 4383-4391 (2013)

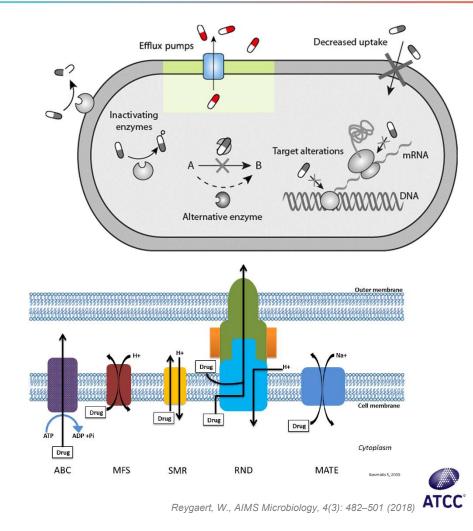
Introduction

History

Antibiotics

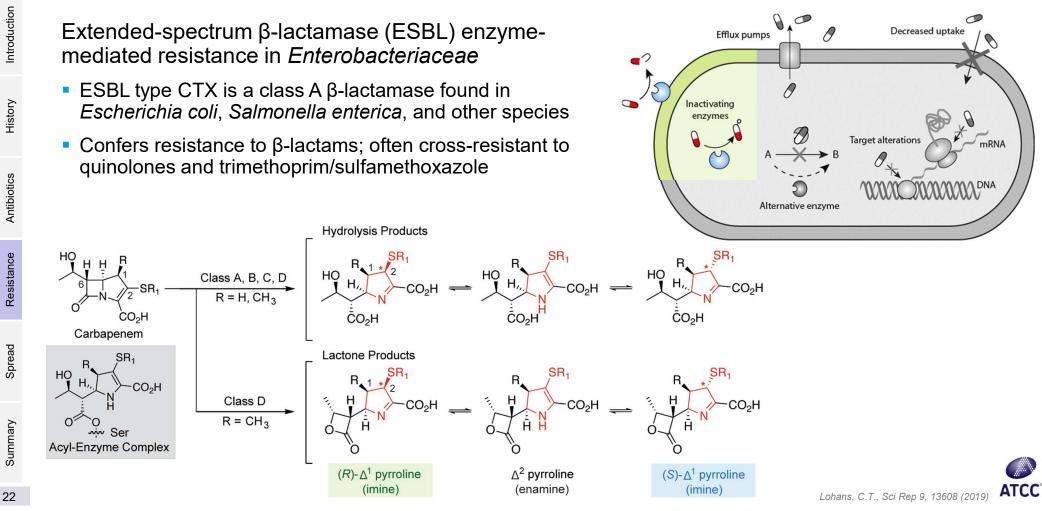
Resistance


Spread


Summary

How Resistance Works : Active Efflux

Efflux pump-mediated resistance in *Pseudomonas* aeruginosa


- MexAB-OprM system: RND (Resistance-nodulationdivision) family of efflux pumps
- Multidrug efflux operon with homologs in many other pathogens
- Confers resistance to fluoroquinalones, macrolides, chloramphenicol, tetracyclines, β-lactams

Introduction

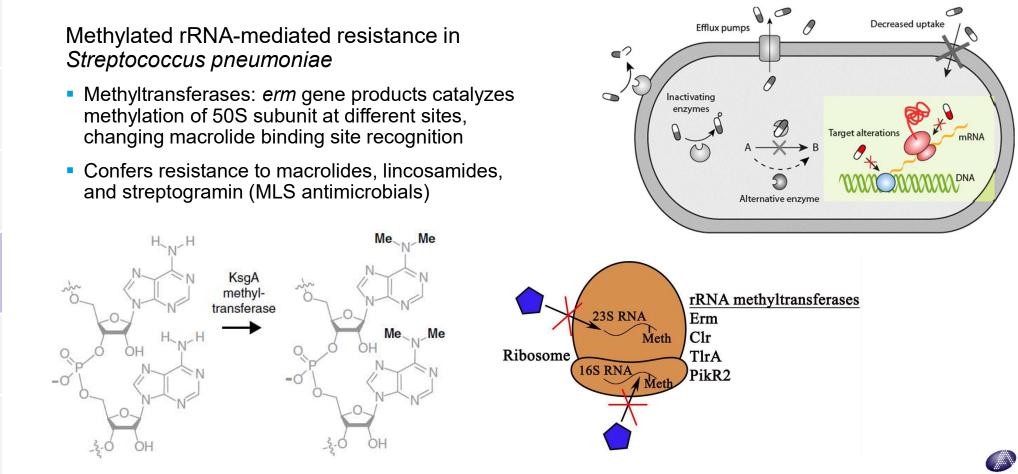
How Resistance Works : Enzymatic Inactivation

Introduction

How Resistance Works: Target Site Modification

Introduction

History

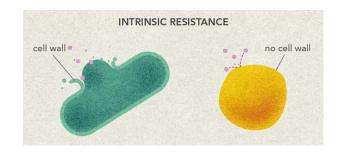

Antibiotics

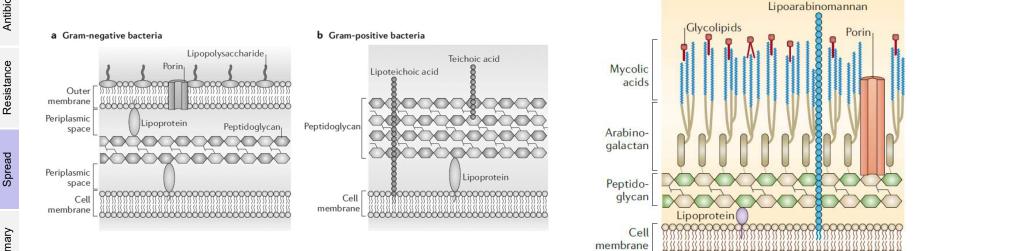
Resistance

Spread

Summary

23




Peterson, E., Kaur, P., Front. Microbiol. 9:2928 (2018) ATCC° Ranasinghe, R.T., Nat Commun 9, 655 (2018)

Spread of Resistance: Intrinsic Resistance

Intrinsic resistance is the innate ability of an organism to resist the action of an antimicrobial as a result of structural or functional characteristics

- Lack of susceptible physiology
- Permeability barriers

c Mycobacteria

Introduction

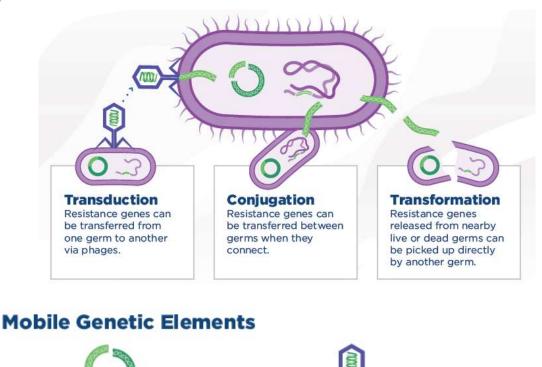
History

Spread of Resistance: Acquired Resistance

Plasmids

Circles of DNA that can

move between cells.


Acquired Resistance – Horizontal Gene Transfer

Horizontal gene transfer (HGT)

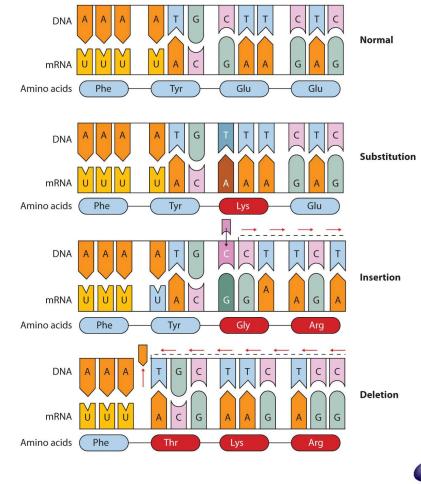
- Transformation: DNA
- Transduction: Phage
- Conjugation: Pilus

Mobile genetic elements (MGE)

- Plasmids
- Transposons
- Mobile gene cassettes
- Phage DNA

Transposons ces of DNA that can g

Small pieces of DNA that can go into and change the overall DNA of a cell. These can move from chromosomes (which carry all the genes essential for germ survival) to plasmids and back.


Viruses that attack germs and can carry DNA from germ to germ.

Genetics of Resistance

Acquired Resistance - Mutation

- Mutation rates in prokaryotes: approximately 10⁻⁶/base, per generation
- Point mutations single base replacements
- Deletion the removal of nucleotide bases or sequences
- Duplication the production of one or more copies of a genetic sequence
- Inversion the reversal of a genetic sequence
- Insertion the addition of bases or sequences
- Translocation the rearrangement of a genetic sequence

www.saylordotorg.github.io

Introduction

Summary

Urgent Threats

Carbapenem-resistant Acinetobacter baumannii

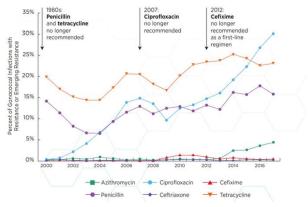
- Acinetobacter infections typically occur in health care settings and can be transmitted from person-to-person or contact with contaminated surfaces
- Pathology: infections in the blood, urinary tract, lungs (pneumonia), or wounds
- Several known mechanisms of resistance, including:
 - β-lactamases
- Aminoglycoside-modifying enzymes

- Efflux pumps
- Permeability defects
- Alteration of target sitesInducible DNA damage response

PERCENT OF GERMS THAT TESTED NON-SUSCEPTIBLE (NOT SENSITIVE) TO OTHER TYPES OF ANTIBIOTICS

Select Antibiotics	2013	2014	2015	2016	2017
Any fluoroquinolone	98%	93%	97%	92%	89%
Any extended-spectrum β-lactam	80%	75%	81%	79%	75%
Ampicillin/sulbactam	62%	62%	59%	64%	61%
Trimethoprim/ sulfamethoxazole	84%	74%	81%	77%	66%

www.cdc.gov

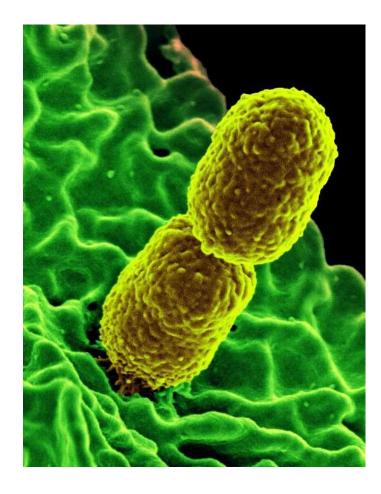

Summary

Urgent Threats

Multidrug-resistant Neisseria gonorrhoeae

- Gonorrhea has developed resistance to all but one class of antibiotics
- Pathology: a sexually transmitted infection (STI) that causes infertility, ectopic pregnancy, increased risk of HIV, and cardiovascular and nervous system complications
- Several known mechanisms of resistance, including:
 - β-lactamases
- Changes in cell membrane permeability
- Chromosomal mutations rRNA methylases
- Efflux pumps

Gonorrhea rapidly develops resistance to antibiotics—ceftriaxone is the last recommended treatment.


www.cdc.gov

Introduction

28

Summary

- Antimicrobial resistance is a growing global health concern that threatens our ability to treat infection and perform essential medical procedures
- There are numerous mechanisms of resistance that have emerged throughout the years
- Resistance can occur due to the innate ability to resist the action of antimicrobials, or through acquired resistance via HGT or mutation
- With numerous multidrug-resistant strains emerging, it is more important than ever that new therapeutics and novel detection methods are developed

Introduction

Cultivating collaboration to support global health

Upcoming Webinar:

Fight Against Superbugs

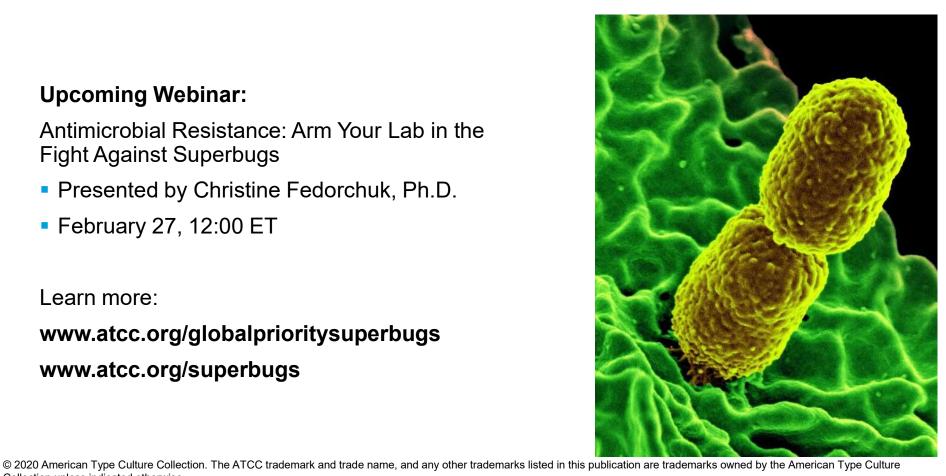
February 27, 12:00 ET

www.atcc.org/superbugs

Learn more:

Collection unless indicated otherwise.

Antibiotics


30

Spread

Antimicrobial Resistance: Arm Your Lab in the

Presented by Christine Fedorchuk, Ph.D.

www.atcc.org/globalprioritysuperbugs

