Vero (ATCC® CCL-81)

Organism: Cercopithecus aethiops  /  Tissue: kidney  /  Disease: normal

Permits and Restrictions

View Permits

Organism Cercopithecus aethiops
Tissue kidney
Product Format frozen
Morphology epithelial
Culture Properties adherent
Biosafety Level 1
Disease normal
Age adult
Applications
This cell line can be used for the detection of verotoxin.
This cell line can be used for efficacy testing.
This cell line can be used to study malaria biology.
This cell line can be used for media testing.
This cell line can be used for mycoplasma testing.
This cell line is a suitable transfection host.
This cell line can be used for the detection of virus in ground beef.
Storage Conditions liquid nitrogen vapor phase
Karyotype This is a cell line with the hypodiploid chromosome count. The modal chromosome number was 58 occurring in 66% of cells. In most cells, over 50% of the chromosomes in each cell complement belonged to structurally altered marker chromosomes. Normal A3, A4, B4, and B5 were absent; B2, B3 and B7 were occasionally paired; and B9, C1 and C5 were mostly paired. The rate of cells with higher ploidies was 1.7%. Other chromosomes were mostly present in single copy.
Images
Derivation
The Vero cell line was initiated from the kidney of a normal adult African green monkey on March 27, 1962, by Y. Yasumura and Y. Kawakita at the Chiba University in Chiba, Japan. 
Virus Susceptibility Human poliovirus 1
Human poliovirus 2
Human poliovirus 3
Getah virus
Pixuna virus
Ross River virus
Semliki Forest virus
Kokobera virus
Modoc virus
Guaroa virus
Tacaribe virus , Tacaribe virus
SV-5 (parainfluenza type 2)
SV40 virus
Measles virus
Rubella virus , Rubella virus
Reovirus type 2
Reovirus 3
Simian adenovirus 3
Simian adenovirus 17
Simian adenovirus 11
Simian adenovirus 1
Simian adenovirus 20
Simian adenovirus 20
Simian adenovirus 18
Simian adenovirus 16
Simian adenovirus 8
Simian adenovirus 17
Simian adenovirus 19
Simian adenovirus 21
Simian adenovirus 25
Simian adenovirus 22
Simian adenovirus 23
Simian adenovirus 38
Simian adenovirus 37
Simian adenovirus 27
Simian adenovirus 39
Simian adenovirus 32
Simian adenovirus 34
Simian adenovirus 31
Simian adenovirus 33
Simian adenovirus 36
Virus Resistance
Apeu; Ossa
Complete Growth Medium The base medium for this cell line is ATCC-formulated Eagle's Minimum Essential Medium, Catalog No. 30-2003. To make the complete growth medium, add the following components to the base medium: fetal bovine serum to a final concentration of 10%.
Subculturing
Volumes are given for a 75 cm2 flask. Increase or decrease the amount of dissociation medium needed proportionally for culture vessels of other sizes.
    1. Remove and discard culture medium.
    2. Briefly rinse the cell layer with 0.25% (w/v) Trypsin- 0.53 mM EDTA solution to remove all traces of serum that contains trypsin inhibitor.
    3. Add 2.0 to 3.0 mL of Trypsin-EDTA solution to flask and observe cells under an inverted microscope until cell layer is dispersed (usually within 5 to 15 minutes).
      Note: To avoid clumping do not agitate the cells by hitting or shaking the flask while waiting for the cells to detach. Cells that are difficult to detach may be placed at 37°C to facilitate dispersal.
    4. Add 6.0 to 8.0 mL of complete growth medium and aspirate cells by gently pipetting.
    5. Add appropriate aliquots of the cell suspension to new culture vessels.
    6. Incubate cultures at 37°C.
Subcultivation Ratio: A subcultivation ratio of 1:3 to 1:6 is recommended
Medium Renewal: 2 to 3 times per week
Cryopreservation
Freeze medium: Complete growth medium supplemented with 5% (v/v) DMSO
Storage temperature: liquid nitrogen vapor phase
Culture Conditions
Atmosphere: air, 95%; carbon dioxide (CO2), 5%
Temperature: 37°C
Name of Depositor W Hann, JS Rhim
Passage History
The cell line was brought to the Laboratory of Tropical Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health in the 93rd passage from Chiba University by B. Simizu on June 15, 1964.
Year of Origin March 27, 1962
References

British Pharmacopoeia Commission Tests for microbial contamination. London, UK:British Pharmacopoeia Commission;British Pharmacopoeia Appendix XVI B, 2003

Didier ES, et al. Characterization of Encephalitozoon (Septata) intestinailis isolates cultured from nasal mucosa and bronchoalveolar lavage fluids of two AIDS patients. J. Eukaryot. Microbiol. 43: 34-43, 1996. PubMed: 8563708

American Public Health Association. Compendium of methods for the microbiological examination of foods. 3rd ed.Washington, DC: American Public Health Association; 1992.

Yasumura Y, Kawakita Y. Studies on SV40 in tissue culture - preliminary step for cancer research in vitro. Nihon Rinsho 21: 1201-1215, 1963.

Simizu B, et al. Characterization of the Tacaribe group of arboviruses. I. Propagation and plaque assay of Tacaribe virus in a line of African green monkey kidney cells (Vero). Proc. Soc. Exp. Biol. Med. 125: 119-123, 1967. PubMed: 6027511

Rhim JS, Schell K. Cytopathic and plaque assay of rubella virus in a line of African green monkey kiency cells (Vero). Proc. Soc. Exp. Biol. Med. 125: 602-606, 1967. PubMed: 4961492

Liebhaber H, et al. Replication of rubella virus in a continuous line of African green monkey kidney cells (Vero). Proc. Soc. Exp. Biol. Med. 125: 636-643, 1967. PubMed: 4961494

Sasaki K, et al. Studies on measles virus. II. Propagation in two established simian renal cell lines and development of a plaque assay. Kitasato Arch. Exp. Med. 37: 27-42, 1964. PubMed: 5833688

Earley E, et al. A plaque neutralization method for arboviruses. Proc. Soc. Exp. Biol. Med. 125(3): 741-747, 1967. PubMed: 15938255

Rhim JS, et al. Temperature dependence of the synthesis of adenovirus tumor and viral antigens. Proc. Soc. Exp. Biol. Med. 127: 642-646, 1968. PubMed: 5689485

Rhim JS, Schell K. Cytopathic effects of the parainfluenza virus SV5 in Vero cells. Nature 216: 271-272, 1967. PubMed: 4293683

Ozawa Y. Studies on the replication of African horse-sickness virus in two different cell line cultures. Arch. Gesamte Virusforsch. 21: 155-169, 1967. PubMed: 4232530

Rhim JS, et al. Growth of Junin virus, the etiological agent of Argentinian hemorrhagic fever, in cell cultures. Arch. Gesamte Virusforsch. 21: 243-252, 1967. PubMed: 5591575

Huber M, et al. Tyrosine phosphorylation events during coxsackievirus B3 replication. J. Virol. 71: 595-600, 1997. PubMed: 8985388

Pugachev KV, et al. Improvement of the specific infectivity of the rubella virus (RUB) infectious clone: determinants of cytopathogenicity induced by RUB map to the nonstructural proteins. J. Virol. 71: 562-568, 1997. PubMed: 8985384

Mundt W, et al. Perfusion system and a method for the large scale production of virus or virus antigen. US Patent 5,719,051 dated Feb 17 1998

Nichol PF, et al. Herpes simplex virus gene expression in neurons: viral DNA synthesis is a critical regulatory event in the branch point between the lytic and latent pathways. J. Virol. 70: 5476-5486, 1996. PubMed: 8764059

Govorkova EA, et al. African green monkey kidney (Vero) cells provide an alternative host cell system for influenza A and B viruses. J. Virol. 70: 5519-5524, 1996. PubMed: 8764064

White LJ, et al. Attachment and entry of recombinant norwalk virus capsids to cultured human and animal cell lines. J. Virol. 70: 6589-6597, 1996. PubMed: 8794293

Martinez R, et al. Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. J. Virol. 70: 2075-2085, 1996. PubMed: 8642627

Zeng L, et al. Identification of amino acids involved in a recognition by dengue virus NS3-specific, HLA-DR15-restricted cytotoxic CD4+ T-cell clones. J. Virol. 70: 3108-3117, 1996. PubMed: 8627790

Hill JM, et al. In vivo epinephrine reactivation of ocular herpes simplex virus type 1 in the rabbit is correlated to a 370-base-pair region located between the promoter and the 5' end of the 2.0-kilobase latency-associated transcript. J. Virol. 70: 7270-7274, 1996. PubMed: 8794381

Carter KL, et al. Characterization of the products of the UL43 gene of herpes simplex virus 1: potential implications for regulation of gene expression by antisense transcription. J. Virol. 70: 7663-7668, 1996. PubMed: 8892886

Malik AK, Weller SK. Use of transdominant mutants of the origin-binding protein (UL9) of herpes simplex virus type 1 to define functional domains. J. Virol. 70: 7859-7866, 1996. PubMed: 8892908

Chen Y, et al. Demonstration of binding of dengue virus envelope protein to target cells. J. Virol. 70: 8765-8772, 1996. PubMed: 8971005

Sandri-Goldin RM, Hibbard MK. The herpes simplex virus type 1 regulatory protein ICP27 coimmunoprecipitates with anti-sm antiserum, and the C terminus appears to be required for this interaction. J. Virol. 70: 108-118, 1996. PubMed: 8523514

Carter KL, Roizman B. The promoter and transcriptional unit of a novel herpes simplex virus 1 alpha gene are contained in, and encode a protein in frame with, the open reading frame of the alpha22 gene. J. Virol. 70: 172-178, 1996. PubMed: 8523523

Russell DW, Miller AD. Foamy virus vectors. J. Virol. 70: 217-222, 1996. PubMed: 8523528

Lukonis CJ, Weller SK. Characterization of nuclear structures in cells infected with herpes simplex virus type 1 in the absence of viral DNA replication. J. Virol. 70: 1751-1758, 1996. PubMed: 8627697

Lagunoff M, et al. Phenotypic properties of herpes simplex virus 1 containing a derepressed open reading frame P gene. J. Virol. 70: 1810-1817, 1996. PubMed: 8627705

Uprichard SL, Knipe DM. Herpes simplex ICP27 mutant viruses exhibit reduced expression of specific DNA replication genes. J. Virol. 70: 1969-1980, 1996. PubMed: 8627723

Leopardi R, Roizman B. The herpes simplex virus major regulatory protein ICP4 blocks apoptosis induced by the virus or by hyperthermia. Proc. Natl. Acad. Sci. USA 93: 9583-9587, 1996. PubMed: 8790373

Pereira ME, et al. Invasive phenotype of Trypanosoma cruzi restricted to a population expressing trans-sialidase. Infect. Immun. 64: 3884-3892, 1996. PubMed: 8751943

AOAC International Virus in beef (ground), microbiological method. Gaithersburg, MD: AOAC International; AOAC "Official Methods of Analysis of the AOAC International" 975.56.

Nucleofection technology from Lonza

Single-use syringes (sterile) for the injection of 100 units per millilitre insulin (U-100), Appendix O. Sydney, NSW, Australia:Standards Australia;Standards Australia AS 1077-1992.

Single-use(sterile) infusion sets for general medical use. Appendix F, Method of test for cytotoxicity. Sydney, NSW, Australia:Standards Australia;Standards Australia AS 2385-1990.

Medical equipment--Single-use winged intravenous devices (sterile) for general medical use. Appendix J. Method of test for cytotoxicity. Sydney, NSW, Australia:Standards Australia;Standards Australia AS/NZS 2485:1995.

Medical devices--Polymer urethral catherters for general medical use. Appendix B. Method of testing catheters for cytotoxicity. Sydney, NSW, Australia:Standards Australia;Standards Australia AS/NZS 2696:1996.

General requirements for single-use, sterile, plasticized polyvinyl chloride (PVC) packs for human blood. Part2: Multiple blood pack systems. Appendix Q. Method of test for Cytotoxicity. Sydney, NSW, Australia:Standards Australia;Standards Australia AS 3787.2-1997.

Testing of products for use in contact with drinking water. Sydney, NSW, Australia:Standards Australia;Standards Australia AS/NZS 4020:2002.

Biological evaluation of medical devices. Part 5: Tests for in vitro cytotoxicity. Sydney, NSW, Australia:Standards Australia;Standards Australia AS ISO 10993.5-2002.

Biological evaluation of medical devices--Part 5: Tests for in vitro cytotoxicity. Geneva (Switzerland):International Organization for Standardization/ANSI;ISO ISO 10993-5:1999.

Test for absence of mycoplasmas. London, UK:British Pharmacopoeia Commission;British Pharmacopoeia Appendix XVI (Vet) 3, 2003

Standard Practice for Indirect Detection of Mycoplasma in Cell Culture by 4-6-Diamidino-2-2 Phenylindole (DAPI) Staining. West Conshohocken, PA:ASTM International;ASTM Standard Test Method E 1533-00 (Reapproved 2006).

Standard Test Method for Determining the Virus-Eliminating Effectiveness of Liquid Hygienic Handwash and Handrub Agents Using the Fingerpads of Adult Volunteers. West Conshohocken, PA:ASTM International;ASTM Standard Test Method E 1838-02.

Standard Quantitative Disk Carrier Test Method for Determining the Bactericidal, Virucidal, Fungicidal, Mycobactericidal and Sporicidal Activities of Liquid Chemical Germicides. West Conshohocken, PA:ASTM International;ASTM Standard Test Method E 2197-02.

Cross References

Nucleotide (GenBank) : X67502 Encephalomyocarditis virus VP1 gene.

Nucleotide (GenBank) : M93012 Monkey diphtheria toxin receptor mRNA.

Nucleotide (GenBank) : U96005 Cercopithecus aethiops endogenous retrovirus-H family LTR Vero1, complete sequence.

Nucleotide (GenBank) : U96006 Cercopithecus aethiops endogenous retrovirus-H family LTR Vero2, complete sequence.

Nucleotide (GenBank) : U96007 Cercopithecus aethiops endogenous retrovirus-H family LTR Vero3, complete sequence.

Nucleotide (GenBank) : U96008 Cercopithecus aethiops endogenous retrovirus-H family LTR Vero4, complete sequence.

Nucleotide (GenBank) : U96009 Cercopithecus aethiops endogenous retrovirus-H family LTR Vero5, complete sequence.

Nucleotide (GenBank) : U96010 Cercopithecus aethiops endogenous retrovirus-H family LTR Vero12, complete sequence.

Nucleotide (GenBank) : U96011 Cercopithecus aethiops endogenous retrovirus-H family LTR Vero13, complete sequence.

Nucleotide (GenBank) : U96012 Cercopithecus aethiops endogenous retrovirus-H family LTR Vero22, complete sequence.

Nucleotide (GenBank) : U96013 Cercopithecus aethiops endogenous retrovirus-H family LTR Vero24, complete sequence.

Nucleotide (GenBank) : M36467 African swine fever (ASF) virus V118, X'82, U124, U104, and L270 protein genes, complete cds.

Notice: Necessary PermitsPermits

These permits may be required for shipping this product:

  • Customers located in the state of Hawaii will need to contact the Hawaii Department of Agriculture to determine if an Import Permit is required. A copy of the permit or documentation that a permit is not required must be sent to ATCC in advance of shipment.
Basic Documentation
Other Documentation
References

British Pharmacopoeia Commission Tests for microbial contamination. London, UK:British Pharmacopoeia Commission;British Pharmacopoeia Appendix XVI B, 2003

Didier ES, et al. Characterization of Encephalitozoon (Septata) intestinailis isolates cultured from nasal mucosa and bronchoalveolar lavage fluids of two AIDS patients. J. Eukaryot. Microbiol. 43: 34-43, 1996. PubMed: 8563708

American Public Health Association. Compendium of methods for the microbiological examination of foods. 3rd ed.Washington, DC: American Public Health Association; 1992.

Yasumura Y, Kawakita Y. Studies on SV40 in tissue culture - preliminary step for cancer research in vitro. Nihon Rinsho 21: 1201-1215, 1963.

Simizu B, et al. Characterization of the Tacaribe group of arboviruses. I. Propagation and plaque assay of Tacaribe virus in a line of African green monkey kidney cells (Vero). Proc. Soc. Exp. Biol. Med. 125: 119-123, 1967. PubMed: 6027511

Rhim JS, Schell K. Cytopathic and plaque assay of rubella virus in a line of African green monkey kiency cells (Vero). Proc. Soc. Exp. Biol. Med. 125: 602-606, 1967. PubMed: 4961492

Liebhaber H, et al. Replication of rubella virus in a continuous line of African green monkey kidney cells (Vero). Proc. Soc. Exp. Biol. Med. 125: 636-643, 1967. PubMed: 4961494

Sasaki K, et al. Studies on measles virus. II. Propagation in two established simian renal cell lines and development of a plaque assay. Kitasato Arch. Exp. Med. 37: 27-42, 1964. PubMed: 5833688

Earley E, et al. A plaque neutralization method for arboviruses. Proc. Soc. Exp. Biol. Med. 125(3): 741-747, 1967. PubMed: 15938255

Rhim JS, et al. Temperature dependence of the synthesis of adenovirus tumor and viral antigens. Proc. Soc. Exp. Biol. Med. 127: 642-646, 1968. PubMed: 5689485

Rhim JS, Schell K. Cytopathic effects of the parainfluenza virus SV5 in Vero cells. Nature 216: 271-272, 1967. PubMed: 4293683

Ozawa Y. Studies on the replication of African horse-sickness virus in two different cell line cultures. Arch. Gesamte Virusforsch. 21: 155-169, 1967. PubMed: 4232530

Rhim JS, et al. Growth of Junin virus, the etiological agent of Argentinian hemorrhagic fever, in cell cultures. Arch. Gesamte Virusforsch. 21: 243-252, 1967. PubMed: 5591575

Huber M, et al. Tyrosine phosphorylation events during coxsackievirus B3 replication. J. Virol. 71: 595-600, 1997. PubMed: 8985388

Pugachev KV, et al. Improvement of the specific infectivity of the rubella virus (RUB) infectious clone: determinants of cytopathogenicity induced by RUB map to the nonstructural proteins. J. Virol. 71: 562-568, 1997. PubMed: 8985384

Mundt W, et al. Perfusion system and a method for the large scale production of virus or virus antigen. US Patent 5,719,051 dated Feb 17 1998

Nichol PF, et al. Herpes simplex virus gene expression in neurons: viral DNA synthesis is a critical regulatory event in the branch point between the lytic and latent pathways. J. Virol. 70: 5476-5486, 1996. PubMed: 8764059

Govorkova EA, et al. African green monkey kidney (Vero) cells provide an alternative host cell system for influenza A and B viruses. J. Virol. 70: 5519-5524, 1996. PubMed: 8764064

White LJ, et al. Attachment and entry of recombinant norwalk virus capsids to cultured human and animal cell lines. J. Virol. 70: 6589-6597, 1996. PubMed: 8794293

Martinez R, et al. Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. J. Virol. 70: 2075-2085, 1996. PubMed: 8642627

Zeng L, et al. Identification of amino acids involved in a recognition by dengue virus NS3-specific, HLA-DR15-restricted cytotoxic CD4+ T-cell clones. J. Virol. 70: 3108-3117, 1996. PubMed: 8627790

Hill JM, et al. In vivo epinephrine reactivation of ocular herpes simplex virus type 1 in the rabbit is correlated to a 370-base-pair region located between the promoter and the 5' end of the 2.0-kilobase latency-associated transcript. J. Virol. 70: 7270-7274, 1996. PubMed: 8794381

Carter KL, et al. Characterization of the products of the UL43 gene of herpes simplex virus 1: potential implications for regulation of gene expression by antisense transcription. J. Virol. 70: 7663-7668, 1996. PubMed: 8892886

Malik AK, Weller SK. Use of transdominant mutants of the origin-binding protein (UL9) of herpes simplex virus type 1 to define functional domains. J. Virol. 70: 7859-7866, 1996. PubMed: 8892908

Chen Y, et al. Demonstration of binding of dengue virus envelope protein to target cells. J. Virol. 70: 8765-8772, 1996. PubMed: 8971005

Sandri-Goldin RM, Hibbard MK. The herpes simplex virus type 1 regulatory protein ICP27 coimmunoprecipitates with anti-sm antiserum, and the C terminus appears to be required for this interaction. J. Virol. 70: 108-118, 1996. PubMed: 8523514

Carter KL, Roizman B. The promoter and transcriptional unit of a novel herpes simplex virus 1 alpha gene are contained in, and encode a protein in frame with, the open reading frame of the alpha22 gene. J. Virol. 70: 172-178, 1996. PubMed: 8523523

Russell DW, Miller AD. Foamy virus vectors. J. Virol. 70: 217-222, 1996. PubMed: 8523528

Lukonis CJ, Weller SK. Characterization of nuclear structures in cells infected with herpes simplex virus type 1 in the absence of viral DNA replication. J. Virol. 70: 1751-1758, 1996. PubMed: 8627697

Lagunoff M, et al. Phenotypic properties of herpes simplex virus 1 containing a derepressed open reading frame P gene. J. Virol. 70: 1810-1817, 1996. PubMed: 8627705

Uprichard SL, Knipe DM. Herpes simplex ICP27 mutant viruses exhibit reduced expression of specific DNA replication genes. J. Virol. 70: 1969-1980, 1996. PubMed: 8627723

Leopardi R, Roizman B. The herpes simplex virus major regulatory protein ICP4 blocks apoptosis induced by the virus or by hyperthermia. Proc. Natl. Acad. Sci. USA 93: 9583-9587, 1996. PubMed: 8790373

Pereira ME, et al. Invasive phenotype of Trypanosoma cruzi restricted to a population expressing trans-sialidase. Infect. Immun. 64: 3884-3892, 1996. PubMed: 8751943

AOAC International Virus in beef (ground), microbiological method. Gaithersburg, MD: AOAC International; AOAC "Official Methods of Analysis of the AOAC International" 975.56.

Nucleofection technology from Lonza

Single-use syringes (sterile) for the injection of 100 units per millilitre insulin (U-100), Appendix O. Sydney, NSW, Australia:Standards Australia;Standards Australia AS 1077-1992.

Single-use(sterile) infusion sets for general medical use. Appendix F, Method of test for cytotoxicity. Sydney, NSW, Australia:Standards Australia;Standards Australia AS 2385-1990.

Medical equipment--Single-use winged intravenous devices (sterile) for general medical use. Appendix J. Method of test for cytotoxicity. Sydney, NSW, Australia:Standards Australia;Standards Australia AS/NZS 2485:1995.

Medical devices--Polymer urethral catherters for general medical use. Appendix B. Method of testing catheters for cytotoxicity. Sydney, NSW, Australia:Standards Australia;Standards Australia AS/NZS 2696:1996.

General requirements for single-use, sterile, plasticized polyvinyl chloride (PVC) packs for human blood. Part2: Multiple blood pack systems. Appendix Q. Method of test for Cytotoxicity. Sydney, NSW, Australia:Standards Australia;Standards Australia AS 3787.2-1997.

Testing of products for use in contact with drinking water. Sydney, NSW, Australia:Standards Australia;Standards Australia AS/NZS 4020:2002.

Biological evaluation of medical devices. Part 5: Tests for in vitro cytotoxicity. Sydney, NSW, Australia:Standards Australia;Standards Australia AS ISO 10993.5-2002.

Biological evaluation of medical devices--Part 5: Tests for in vitro cytotoxicity. Geneva (Switzerland):International Organization for Standardization/ANSI;ISO ISO 10993-5:1999.

Test for absence of mycoplasmas. London, UK:British Pharmacopoeia Commission;British Pharmacopoeia Appendix XVI (Vet) 3, 2003

Standard Practice for Indirect Detection of Mycoplasma in Cell Culture by 4-6-Diamidino-2-2 Phenylindole (DAPI) Staining. West Conshohocken, PA:ASTM International;ASTM Standard Test Method E 1533-00 (Reapproved 2006).

Standard Test Method for Determining the Virus-Eliminating Effectiveness of Liquid Hygienic Handwash and Handrub Agents Using the Fingerpads of Adult Volunteers. West Conshohocken, PA:ASTM International;ASTM Standard Test Method E 1838-02.

Standard Quantitative Disk Carrier Test Method for Determining the Bactericidal, Virucidal, Fungicidal, Mycobactericidal and Sporicidal Activities of Liquid Chemical Germicides. West Conshohocken, PA:ASTM International;ASTM Standard Test Method E 2197-02.