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Figure 8: Functional characterization of human cardiac organoids generated by RODEO using ATCC iPSC lines. (A) Heatmap of key cardiac gene markers from RNA-seq analysis of hiPSC-derived cardiomyocytes (ATCC® ACS-
1021™), fetal cardiomyocytes, vascularized cardiac organoids, and adult cardiomyocytes. Bold, asterisked genes represent differential expression between cardiac organoids and fetal cardiac muscle, 3 biological replicates, FDR<0.05
(methods). (B) Principal component analysis (PCA) of 513 genes differentially expressed between hiPSC-derived cardiomyocytes and vascularized cardiac organoids. Cardiac organoids cluster with adult, but not fetal cardiomyocytes. (C)
Visual contraction analysis of UN-1 vascularized cardiac organoids treated with DMSO (Control), 10 uM amiodarone, or 100 yM epinephrine, normalized to the highest and lowest signal recorded through the entire measurement duration
(30 seconds; methods). Analysis shows that untreated organoids acquire a homogenous synchronized spontaneous beating of 66+5 beats per minute. Stimulation with 100 uM epinephrine increases the contraction rate to 88+7 bpm and
relative contraction by 18% (n=5, p<0.001), while stimulation with 10 yM amiodarone decreased the rate to 5214 bpm and contraction by 28% (n=5, p<0.001) , resulting in a physiological-like response to the drugs. Mean of 5 biological
replicates; Error bars = SEM. Significance was determined using a one-way ANOVA with Dunnett correction. (D) Seahorse MitoStress test comparing cardiac organoids and hiPSC-derived cardiomyocytes (hiPSC-CMs) from three
independent hiPSC donors. Lines represents independent experiments; error bars mark standard error of mean among n=3 biological repeats. (E) Nested analysis shows that the basal respiration of cardiac was 132% higher than hiPSC-
cardiomyocytes (n=9, p<0.01), oxidative phosphorylation increased by 23% (n=9, p<0.05), and maximal respiratory capacity increased by 70% (n=9, p<0.01). ECAR, a surrogate for glycolysis, did not change significantly. Middle represents
mean of 3 biological repeats in 3 independent experiments for each line; Error bars = SEM. Significance was determined using a two-tailed nested t-test.
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Figure 7: Generation of hiPSC-derived vascularized cardiac organoids. (A) "Vascularized cardiac organoids formed
with cardiac endothelial cells (CEC-GFP) and stained for cardiac Troponin T (cTnT) and Alpha-actinin. The organoid shows
aligned cardiac fibers surrounding the chambers embedded with a vascular network.” The organoids ' wall displays aligned
cardiac fibers (CTNT) pierced with a distinct microvasculature (white arrow). Scale bar, 50 pym. Scanning electron
micrograph of vascularized cardiac organoid demonstrates lumen formation (white arrow). Scale bar = 10 um. (B) High
/ \ magnification image of a vascularized cardiac organoid stained for cardiac Troponin T (cTnT) and Alpha-actinin, showing

Figure 1: RODEO technology generated consistently sized organoids, facilitating the high-throughput
manufacturing of organoids in a well-plate format for drug screening.

Do D1 Cardiac Maturation b8 mature cardiac tissue phenotype with aligned sarcomeres. Scale bar = 10 um. (C) Confocal image of a vascularized
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- ascularized cardiac organoid displaying human vimentin staining. The organoid's myocardial layer is interwoven - . .
/ with VIM-positive cardiac fibroblast-like cells. Scale bar = 50 ym. (E) Confocal image of cardiac organoids stained for : RODEO’ a 3D hlgh'throughPUt teChnOIOgy’ advances the creation of in-
_ _ _ _ _ - Wilms tumor protein (WT1) and the T-box transcription factor 18 (TBX18) with a single epicardium shell and nuclei showing vivo—like in vitro cardiac models. g
Figure 2: ATCC Maturation Reagent (AMR)™ tested on iCell® Cardiomyocytes*(Fujifilm® CDI). positive staining for both markers. Scale bar = 100 um. (G) Cardiac organoids stained for human platelet endothelial cell . These vascularized multichambered cardiac oraanoids underscore the ACknOWIed eme nt

adhesion molecule (PECAM-1), showing membranal distribution within the chamber, indicating endocardial lining. The o _ _ _ _ 9 _ _ _ _ _
white arrow indicates a capillary-like structure. Scale bar = 50 pm. utility of microphysiological systems for use in drug discovery. Israel-U.S. Binational Industrial Research and Development Foundation (BIRD)
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