

ASM Microbe 2024

RAISIN

A Pipeline Intended to Better Characterize Variants on the Amino Acid Level

Nikhita Puthuveetil, MS Senior Bioinformatician, ATCC® June 14, 2024

Credible Leads to Incredible™

Visit us at booth #912

About ATCC®

- Founded in 1925, ATCC[®] is a non-profit organization with HQ in Manassas, VA, and an R&D and Services center in Gaithersburg, MD
- World's premier biological materials resource and standards development organization
 - 5,000 cell lines
 - 80,000 microorganisms
 - Genomic & synthetic nucleic acids
 - Media/reagents

- ATCC® collaborates with and supports the scientific community with industry-standard biological products and innovative solutions
- Growing portfolio of products and services
- Sales and distribution in 150 countries,
 19 international distributors
- Talented team of 600+ employees, over onethird with advanced degrees

ATCC'S Sequencing & Bioinformatics Center

analysis

Tracking variance in SARS-CoV-2 samples

Ensuring product authenticity and creating a standard for SARS-CoV-2

- A need to track genomic variance between SARS-CoV-2 samples quickly and effectively
 - Between strains

- Between cell lines

Between passages

Could we do this with any virus?

Extending SARS-CoV-2 analysis to any virus sample

- A need to track genomic variance for any virus sample quickly and effectively
- Ensure product authenticity for any strain

Components of variant analysis

Example data

A need for a variant annotation tool

If you only need a VCF + annotations file, can't anyone do this?

Overview of RAISIN

Retrieving Amino acid Implications from Sequencing IteratioNs (RAISIN)

Case Study

How we used RAISIN's STANDARD mode

- In one of our previous human coronavirus studies, sample A was serially passaged in cell line Y to determine if Y was an adequate host for this sample
- The 1st and 3rd passages were sequenced and then run through RAISIN STANDARD.

Increase in variants in S and replicase regions

Passage 3 shows more variants in the S and replicase regions

Overview of RAISIN: Compare mode

Retrieving Amino acid Implications from Sequencing IteratioNs (RAISIN)

COMPARE mode output

Compare variants across samples or passages

Position	Reference allele	Alternate allele	Protein	Frequency Difference
55	С	Α	UTR	9.09%
60	Α	G	UTR	-1.87%
432	G	Α	replicase polyprotein 1ab	0%
1779	Α	G	replicase polyprotein 1ab	0.69%
20300	Т	С	replicase polyprotein 1ab	0%
20676	С	Т	S protein	-4.54%
20842	Т	G	S protein	1.38%
21164	G	Α	S protein	-3.22%

Overview of RAISIN: ANCHOR mode

Retrieving Amino acid Implications from Sequencing IteratioNs (RAISIN)

Why the need for ANCHOR mode?

Looking back to SARS-CoV-2 strain authentication

Comparison of sample strain to other strains

- Three-way comparison of sample to strain reference and Wuhan-Hu-1 reference
 - How has the sample deviated from Wuhan-Hu-1?
 - How has the sample deviated from the strain of interest?

ANCHOR mode localizes variants

Variants are under one coordinate system

Sample should have a deletion at position 50

-XXX-

ATAA

Alpha strain isolate

Position 50 is based on the coordinates of Wuhan-Hu-1

Wuhan-Hu-1 reference 29,903 bp

Where does that correspond to in the alpha strain?

Alpha strain reference 29,893 bp

Deletion is at position 45 based on alpha strain

ANCHOR mode localizes variants

Variants are under one coordinate system

Sample should have a deletion at position 50

ATAA

Alpha strain isolate

Position 50 is based on the coordinates of Wuhan-Hu-1

Wuhan-Hu-1 reference 29,903 bp Where does that correspond to in the alpha strain?

Alpha strain reference 29,893 bp

- ANCHOR mode takes care of the math and reports all variants based on the coordinate position of the anchor reference
- Reporting variants under one coordinate system is convenient

ANCHOR mode used on other viruses

Using ANCHOR mode for Ebola

Comparison of sample strain to other strains

- Three-way comparison of sample to strain reference and Zaire reference
 - How has the sample deviated from Zaire?
 - How has the sample deviated from the strain isolated in the lab?
- Use the Zaire coordinate system to report variant positions
- Useful in detecting viral mutants and host effects

ANCHOR mode classifies variants based on differences

Compares each allele and assigns a classification (I-IV)

Variant Classification		Example Scenarios			
		Anchor Allele	Strain Allele	Sample Allele	
1	Anchor allele different	Т	G	G	
II	Sample allele different	Т	Т	С	
Ш	Strain allele different	Т	Α	Т	
IV	All alleles different	С	G	Т	

Legend:

- **ANCHOR:** a scientific community recognized or experiment-specific sequence
- * STRAIN: a sequence that is more closely related to the sample
- **SAMPLE:** a consensus sequence of the sample reads mapped to the strain sequence

Summary of RAISIN modes

With each mode of RAISIN, viral variants are characterized under a different lens

STANDARD

Retrieves amino acid mutations for viral variants

COMPARE

Ideal for detecting differences in variants between passages

ANCHOR

Reframes variants against a community recognized reference

- Future developments:
 - Expanding to other microbes
 - Addition of a predictive viral annotation step

Visit us at genomes.atcc.org

Nikhita Puthuveetil, MS Senior Bioinformatician **ATCC** nputhuveetil@atcc.org

