

On the edge of the bubble: Use of exosomes as reference materials in biomedical research^{HJ14}

Siddhartha Paul, Ph.D. Scientist, ATCC Cell Biology

Credible Leads to Incredible™

Slide 1

HJ14 Check consistency of font, especially on the slide headings Huuskonen, Jarkko, 10/22/2019

- Founded in 1925, ATCC is a non-profit organization with HQ in Manassas, VA, and an R&D and Services center in Gaithersburg, MD
- World's largest, most diverse biological materials and information resource for microbes – the "gold standard"
- Innovative R&D company featuring gene editing, microbiome, NGS, advanced models
- cGMP biorepository

- Partner with government, industry, and academia
- Leading global supplier of authenticated cell lines, viral and microbial standards
- Sales and distribution in 150 countries, 18 international distributors
- Talented team of 450+ employees, over one-third with advanced degrees

Agenda

- I. Exosomes and extracellular vesicles
- II. Exosome reference material ATCC quality and reproducibility
- III. Validation data to support ATCC exosome reference materials

Exosomes and extracellular vesicles

Extracellular vesicles and exosome biogenesis

- Cell-derived
- Present in all biological fluids
- 30-200 nm with lipid bilayer
- Serve as "cargo" for RNA and protein molecules
- Diverse functions:
 - Cellular communication
 - Waste product management

Image adapted from Zijlstra et al, Nature Cell Biology, 2018

Application of exosomes

Liquid biopsy/Diagnostics

Cell therapy/Regenerative medicine

Payload/Drug delivery

- Reference standards reduce the time and costs of developmental work
- Reference standards increase reproducibility of the assays
- Reference materials help to regulate the quality of one's own material

Reference standards add value to research work or product development

Exosome reference materials

A platform for exosomes isolation and quality control

ATCC exosome portfolio

ATCC [®] No.	Parental cell designation	Cancer type	Status
SCRC-4000-EXM [™]	hTERT-immortalized adipose-derived mesenchymal stem cell (MSC)	N/A	AVAILABLE
CCL-185-EXM [™]	A549	Carcinoma, lung	AVAILABLE
CRL-1435-EXM [™]	PC-3	Adenocarcinoma, prostate	COMING SOON
CCL-247-EXM [™]	HCT-116	Carcinoma, colorectal	COMING SOON
CRL-1740-EXM [™]	LnCap	Carcinoma, prostate	COMING SOON
HTB-26-EXM [™]	MDA-MB-231	Adenocarcinoma, breast	COMING SOON
HTB-14-EXM [™]	U-87 MG	Glioblastoma	COMING SOON
CCL-2-EXM [™]	HeLa	Adenocarcinoma, cervix	COMING SOON
HTB-22-EXM™	MCF-7	Adenocarcinoma, breast	COMING SOON

Immortalized cell lines and continuous cell lines reduce lot to lot variability

ATCC quality control for each lot of production

Attributes	Test	Specification	
Protein concentration/vial	BCA assay	Approximately 100 µg	
Particle number /vial	NTA analysis	≥ 10 ⁹ particles	
Size distribution (% particle within 50-200 nm)	NTA analysis	Cell type dependent	
Protein Marker expression	Western Blotting	Transmembrane and cytosolic proteins	
Sterility	Bacteria, yeast, fungi	Sterile	
Mycoplasma	PCR based assay	Negative	

Comparison of ATCC and competitor exosomes

Product Attributes	АТСС	Competitor H	Competitor A	Competitor B	Competitor Z
Defined size range	\checkmark	×	×	×	×
Marker verification	\checkmark	\checkmark	×	×	×
Particle verification	✓	×	×	×	×
Functional data	✓	×	✓	✓	✓
Frozen or lyophilized	Frozen	Lyophilized	Frozen	Frozen	Frozen

Characterization of ATCC exosomes

Characterization of TFF-purified exosomes: Size distribution analysis via NTA

ATCC[°]

Cell Type	Particle number	% Particles between 50- 200nm size range
MSC exosome Lot 1	4.1×10 ¹⁰ particles/mL	90.7
MSC exosome Lot 2	6.1×10 ¹⁰ particles/mL	96.1

Consistent and high yield of particles in exosome size range was observed in two separate production lots

Characterization of TFF-purified exosomes

Consistent expression of exosomal biomarkers was observed in two separate production lots

Functional testing: Exosome uptake assay

Exosomes uptake was tested in multiple cell types

ATCC

Functional data using ATCC exosomes

Functional testing: Wound healing and migration

A gap was created on Primary Gingival Keratinocytes (ATCC[®] PCS-200-014[™]), followed by treatment with exosomes derived from MSCs and IPSCs

Stem cell-derived exosomes promote cell migration

Functional testing: In vitro endothelial tubule formation

Stem cell exosomes promote angiogenesis

Functional testing: Anchorage-independent growth

Functional testing: Anchorage-independent growth

Tumor cell-derived exosomes induce normal cells to exhibit a malignant phenotype

Summary

- Exosomes were derived from well-characterized and authenticated ATCC cell lines
- ATCC exosomes demonstrate the expected size distribution and expression of characteristic protein markers
- The exosomes demonstrated functionality in multiple in vitro assays
- Our in-house exosome isolation strategy ensures high purity, high reproducibility, and low lot-to-lot variability
- ATCC also offers custom exosome isolation services

www.atcc.org/exosomes

Cultivating collaboration to support global health

Visit www.atcc.org/exosomes for more information

Upcoming webinars:

 Prevent Analysis Variability by Using Reference-quality Microbial Genomes — Shift from Consensus to Discernible November 14, 12:00 ET

www.atcc.org/webinars

© 2019 American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise.

ATCC°