

Does All Disease Begin in the Gut?
Monitoring the Barrier Function of an In Vitro Gut Mimic

Eline Geervliet, MSc Application Scientist Locsense B.V.

Credible Leads to Incredible™

About ATCC

- Founded in 1925, ATCC is a non-profit organization with HQ in Manassas, VA, and an R&D and Services center in Gaithersburg, MD
- World's largest, most diverse biological materials and information resource for cell culture – the "gold standard"
- Innovative R&D company featuring advanced models, differentiated stem cells, gene editing

- Partner with government, industry, and academia
- Leading global supplier of authenticated cell lines, viral and microbial standards
- Sales and distribution in 150 countries,
 19 international distributors
- Talented team of 550+ employees, over onethird with advanced degrees

Does all disease begin in the gut? ~Hippocrates

Monitoring the barrier function of an in vitro gut mimic

Eline Geervliet, MSc Application scientist at Locsense B.V.

www.Locsense.nl

Index

- Function of the gut
- Gut mimic: in vitro translation
- Impedance spectroscopy & transepithelial electrical resistance (TEER)
- Interfering with the tight junction/barrier
- Measuring the tight junction/barrier
- Conclusions

Index

- Function of the gut
- Gut mimic: in vitro translation
- Impedance spectroscopy & transepithelial electrical resistance (TEER)
- Interfering with the tight junction/barrier
- Measuring the tight junction/barrier
- Conclusions

Function of the gut

Impaired gut barrier leads to:

Liver disease [1]

Brain damage [2]

Lung disease [3]

Pancreas [4]

Etc....

- [1] A. Albillos et al. "The gut-liver axis in liver disease: Pathophysiological basis for therapy", J. Hepatol 2020
- [2] J. Appleton et al. "The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health," Integr Med 2018
- [3] L. Qu et al. "COPD and Gut-Lung Axis: How Microbiota and Host Inflammasome Influence COPD and Related Therapeutics," Front Microbiol 2022
- 7 [4] Z. Zhang, et al. "Intestinal homeostasis and inflammation: Gut microbiota at the crossroads of pancreas-intestinal barrier axis," Eur J Immunol 2022

In vitro analysis

A representable in vitro gut mimic is necessary to investigate:

- which factors influence the barrier function
- the cross talk between the gut and other organs

Aim:

- Propose a representable gut mimic
- Evaluate the barrier function of the gut mimic

Index

- Function of the gut
- Gut mimic: in vitro translation
- Impedance spectroscopy & transepithelial electrical resistance (TEER)
- Interfering with the tight junction/barrier
- Measuring the tight junction/barrier
- Conclusions

In vitro translation of the gut barrier

1. Cell type

3. 2D/3D structure

2. Cell medium

Cell type [1, 2]

- Villi differentiated compartment
 - Enterocytes nutrient absorption
 - Goblet cells production of mucus
 - Enteroendocrine cells hormone production
 - Cup cells function not clear
- Crypts proliferative compartment
 - Paneth cells regulate gut microbiota
- Other
 - Microfold cells (M-cells) contact with immune system

[1] V. Bonis, et al. "The Intestinal Epithelium – Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip," Front. Cell Dev. Biol. 2021

Cell type

12

Cell type

Caco-2 [1] Enterocyte

Derived from the colon

ATCC® HTB-37TM

20% FBS

90% cell number [1]

HT29-mtx [1] Goblet-like cell

Derived from the colon

Mucus producing cells

10% FBS

10% cell number [1]

13[1] P. Hoffmann et al., "Caco-2/HT29-MTX co-cultured cells as a model for studying physiological properties and toxin-induced effects on intestinal cells," PLoS One 2021

Culturing medium

Cultured in DMEM-F12-GlutaMAX

Alternative DMEM-F12-Glutamine (ATCC[®] 30-2006[™])

1% Supplemented with non-essential amino acids

1% Pen/strep, removed during standard culture and monolayer formation

Penicillin-Streptomycin Solution (ATCC® 30-2300™)

15% FBS, compromise

Fetal Bovine Serum (FBS) (ATCC[®] 30-2020[™])

Passaged via trypsin-EDTA

Trypsin-EDTA (ATCC[®] 30-2101[™])

3D structure

Transwell

Complete culturing procedure

17 Prepared and performed by Lena Koch, Applied Stem Cell Technologies

Caco-2, HT29-mtx co-culture

Green = Wheat germ agglutinin (WGA) → mucus marker

Blue = DAPI → nucleus marker

Red = Actin → cytoskeleton marker

Index

- Function of the gut
- Gut mimic: in vitro translation
- Impedance spectroscopy & transepithelial electrical resistance (TEER)
- Interfering with the tight junction/barrier
- Measuring the tight junction/barrier
- Conclusions

Impedance spectroscopy and Transepithelial electrical resistance (TEER)

Impedance = The combined effect of **resistance** and **reactance** in a circuit [1]

All the obstacles that impede the current to flow to the other electrode

TEER = The measurement of **electrical resistance** across a cellular layer [1]

Tight junction resistance between the cells = barrier function

Alternating Current (AC)

20[1] Srinivasan, B. et al. "TEER measurement techniques for in vitro barrier model systems" *J. Lab. Autom.* 2015

Impedances = Resistance + Reactance

Resistance

Constant impedance of electrical current

Reactance - capacitance

Capability to store and release electrical

charge

Resistance and capacitance

Resistance = swimming

It takes longer to get to the other side, but going is continuous

Capacitance = a ferry boat

It has to wait for other passengers, but it travels fast when it is going

Impedance measurement

Circuit model fitting

Components of the circuit:

- 1. $R_{el1} + C_{el1} = Resistance + capacitance of electrode 1$
- 2. $R_{\text{medium}} = \text{Resistance of the medium}$
- 3. $R_{tight1}+C_{mem1}$ = the tight junction resistance and membrane capacitance of the apical side
- 4. $R_{tight2}+C_{mem2}$ = the tight junction resistance and membrane capacitance of the basolateral side
- 5. $R_{trans} = resistance of the coated transwell$
- 6. $R_{el2} + C_{el2} = Resistance + capacitance of electrode 2$

Transepithelial electrical resistance (TEER)

The cells influence

 $R_{tight1} + C_{mem1} =$ the tight junction resistance and membrane capacitance of the apical side $R_{tight2} + C_{mem2} =$ the tight junction resistance and membrane capacitance of the basolateral side $R_{trans} =$ resistance of the coated transwell

The total TEER = R_{tight1} + R_{tight2}

Index

- Function of the gut
- Gut mimic: in vitro translation
- Impedance spectroscopy & transepithelial electrical resistance (TEER)
- Interfering with the tight junction/barrier
- Measuring the tight junction/barrier
- Conclusions

Tight junctions

EGTA and tight junctions

High levels of free calcium

EGTA mediated depletion of free calcium

Lactobacillus acidophilus (LA) and tight junctions [1]

LA attaches to the apical side of the Enterocyte \rightarrow ↑ TLR-2 membrane protein

TLR-2 membrane protein \rightarrow \uparrow interaction with TLR-1 and TLR-6

TLR2/TLR1 and TLR2/TLR6 → ↑ occludin

[1] R. Al-Sadi et al., "Lactobacillus acidophilus Induces a Strain-specific and Toll-Like Receptor 2e Dependent Enhancement of Intestinal Epithelial Tight Junction Barrier and Protection Against Intestinal 30 Inflammation," Am J Pathol, 2021

Index

- Function of the gut
- Gut mimic: in vitro translation
- Impedance spectroscopy & transepithelial electrical resistance (TEER)
- Interfering with the tight junction/barrier
- Measuring the tight junction/barrier
- Conclusions

Complete procedure

Conditions

A1-A3: Ctrl

A4-A6: LA (10⁸ CFU) B1-B3: EGTA (5mM)

B4: no cells

 $T=0 \rightarrow Measurement 1$

After measurement > LA is added to LA wells

T=24 → Measurement is performed

After T=24 \rightarrow medium of EGTA wells is removed, EGTA in PBS is added for 45 min \rightarrow old medium (+10% fresh) is added

 $T=25 \rightarrow Measurement is performed$

Repeated at T=48 + T=49 and T=72 + T=73

33Prepared and performed by Lena Koch, Applied Stem Cell Technologies

Raw impedance data

TEER results

Percentage of initial TEER

Temp. does not significantly change TEER

Difference between 2 measurements

	Ctrl
Day 1	6,5
	ns
Day 2	38,9
	ns
Day 3	4,7
	ns

LA does not significantly change the TEER

Difference between Ctrl and LA

Time (h)	LA	
24	15,4	ns
25	-11,6	ns
48	-14,3	ns
49	-34,6	ns
72	-29,2	ns
73	-26,2	ns

EGTA does significantly change the TEER

Difference between Ctrl and LA or EGTA

Time (h)	LA		EGTA	
24	15,4	ns	14,0	ns
25	-11,6	ns	-70,2	***
48	-14,3	ns	-65,0	**
49	-34,6	ns	-136,2	**
72	-29,2	ns	-79,9	***
73	-26,2	ns	-125,1	****

EGTA does significantly change TEER in 45 min

Difference between before and after EGTA addition

	EGTA
Day 1	-77,7

Day 2	-32,3

Day 3	-40,5

EGTA treatment is reversible

EGTA is capable of partial recovery after treatment

	Difference	
25-48	33,6	**
49-72	40,4	**

Index

- Function of the gut
- Gut mimic: in vitro translation
- Impedance spectroscopy & transepithelial electrical resistance (TEER)
- Interfering with the tight junction/barrier
- Measuring the tight junction/barrier
- Conclusions

Conclusions cell culturing

- A Caco-2 (ATCC[®] HTB-37[™]) HT29-mtx co-culture is a representable in vitro gut mimic
- 9:1 ratio
- Cultured in DMEM-F12-GlutaMAX culturing medium
 - _o 15% FBS, compromise
- 21-day pre-culture

Conclusions impedance spectroscopy

- Impedance spectroscopy is a non-destructive measurement technique
- Circuit model fitting enables to extract TEER data from complex impedance measurements
- The Artemis device
 - Automated measurement
 - User friendly
 - Time saving
 - Reduces cross contamination risks

Conclusions EGTA and LA

- Temperature influences, but changes the TEER non-significantly
- Lactobacillus acidophilus does not significantly influence the tight junction barrier
- EGTA successfully hampers the tight junctions
- EGTA barrier function impairment is reversible

Collaboration

This webinar was a collaboration between Locsense B.V. and Applied Stem Cell Technologies, University of Twente, the Netherlands

Work is conceptualized and performed by Lena Koch

Conceptualization and funding acquisition Kerensa Broersen

Artemis TEER/impedance spectroscopy instrument is provided by Locsense

THANKS

Follow Locsense on LinkedIn for

info@locsense.nl www.locsense.nl Institutenweg 25 7521PH Enschede

Questions?

For more information:

www.atcc.org/tox

https://locsense.nl

