Women’s Health Research Tools

SEXUALLY TRANSMITTED INFECTION (STI)

Bacteria
Chlamydia and gonorrhea are common, curable STIs caused by bacteria. Though most women do not exhibit symptoms of either infection, they are at risk for developing serious complications.

Trichomonas vaginalis
Trichomoniasis is a very common, curable STI caused by the protozoal parasite Trichomonas vaginalis. It is estimated that over 1 million people are infected daily, with 3.1% among women ages 14-49. The United States is estimated to be home to approximately 4 million infected individuals.

Viruses
Human herpes virus, human papilloma virus (HPV), and HIV are sexually transmitted viruses that cause long-term, incurable disease.

Protozoa
Trichomoniasis is a very common STI caused by the protozoan parasite Trichomonas vaginalis. The prevalence of this transmissible infection in the United States is estimated to be 1.5% among women ages 14-49.

REPRODUCTIVE CANCER

Breast Cancer Cell Lines
Some cancer cell lines are derived from the ductal, lobular, or connective tissues of the breast. There are over 14 types of breast cancer cell lines categorized based on their receptors. The human breast cancer cell line is the most commonly diagnosed among reproductive cancers.

Endometrial Cancer
Endometrial cancer is the most common cancer of the female reproductive system. It causes more deaths than any other cancer of the female reproductive system.

Gynecological Cancer Panels
ATCC Gynecological Cancer Cell Lines are provided for drug development, cancer research, and development of technologies for cancer research.

Reproductive Cancer Research Tools
The extracellular matrix is an important factor in the regulation of cell proliferation and differentiation. The extracellular matrix is a complex network of proteins and carbohydrates that provide structural support and functions to cells located throughout the body.

CERVICAL CANCER

Cervical Cancer
The cervix is sensitive to infection by human papillomavirus (HPV), which can lead to cellular alterations resulting in cancer. For example, HPV, the first cell line to successfully be cultured continuously, is positive for HPV.

UTERINE/ENDOMETRIAL CANCER

Uterine or Endometrial Cancer
Uterine or endometrial cancer arises from the innermost layer of the uterus. These cancers are the most commonly diagnosed among reproductive cancers.

OVARIAN CANCER

Ovarian Cancer
Ovarian cancer is the most difficult to detect, stands highest in mortality among cancers of the female reproductive system. In fact, it causes more deaths than any other cancer of the female reproductive system.

Cancer Cell Matrix Baseline Membrane Gel
The extracellular matrix is an important matrix for the maintenance of the extracellular matrix and its regulation in response to transformation. CellMatrix Baseline Membrane Gel (ATCC® ACS-3081™) may be used to promote spherical formation in cancer cell lines in vitro.

Gynecological Cancer Panels
ATCC Gynecological Cancer Cell Panels are used to identify and diagnose specific mutations in breast-specific cancer cell lines, characteristic of potential cancer-driven genes, and streamline drug development studies.

Gynecological Research Tools
Some of these tools include: Agarose gel electrophoresis to ensure integrity; spectrophotometry to evaluate purity; PicoGreen®, RiboGreen®, or Droplet Digital™ PCR to calculate concentration; PCR to confirm functional activity; and sequence analysis of conserved genomic regions to confirm species identity.

ENDOCRINE DISEASE

Endocrine Chemical Standards
ATCC nucleic acids extracted from cell lines and microorganisms, or synthetically developed as molecular standards for difficult-to-grow or un cultivable organisms, are available for rapid analysis of key genes targeted in the analysis of cancer, sexually transmitted microorganisms, as well as endocrine, gastrointestinal, and cardiovascular diseases. Each ATCC preparation of high-quality DNA and RNA is isolated or synthetically derived under aseptic conditions to prevent cross-contamination. What’s more, you can trust that the Genuine Nucleics you obtain from ATCC have been fully authenticated and characterized by one or more of the following analyses: Agarose gel electrophoresis to ensure integrity; spectrophotometry to evaluate purity; PicoGreen®, RiboGreen®, or Droplet Digital™ PCR to calculate concentration; PCR to confirm functional activity; and sequence analysis of conserved genomic regions to confirm species identity. Find the nucleic acids you need to accelerate your research at www.atcc.org/GenuineNucleics.

ENDOCRINE DISEASE

Breast Cancer Tumor Cell Panels
For in vitro/on vivo research, ATCC offers Tumor/Normal Matched Cell Line Pairs, Genetic Alteration Panels, and Panels by Molecular Signature.

Breast Cancer
The American Cancer Society estimates that over 26,000 deaths each year are due to cancers of the female reproductive system. These cancers can be divided into cervical, endometrial, and ovarian.

Cervical Cancer
The cervix is sensitive to infection by human papillomavirus (HPV), which can lead to cellular alterations resulting in cancer. For example, HPV, the first cell line to successfully be cultured continuously, is positive for HPV.

Endometrial Cancer
Endometrial cancer is the most common cancer of the female reproductive system. It causes more deaths than any other cancer of the female reproductive system.

Ovarian Cancer
Ovarian cancer is the most difficult to detect, stands highest in mortality among cancers of the female reproductive system. In fact, it causes more deaths than any other cancer of the female reproductive system.

Endocrine Research Tools
The extracellular matrix plays a role in the regulation of cell proliferation and differentiation. The extracellular matrix is a complex network of proteins and carbohydrates that provide structural support and functions to cells located throughout the body.

Endocrine Disorder
A person suffering from thyroid disease has an imbalanced function located throughout the body. The thyroid gland secretes hormones that regulate cell function throughout the body in the form of salivary hormones. There are eight endocrine glands, each with a unique tissue with endocrine function located throughout the body.

Primary Vascular Endothelial Cells
Microbial Infection
The extracellular matrix plays a role in the regulation of cell proliferation and differentiation. The extracellular matrix is a complex network of proteins and carbohydrates that provide structural support and functions to cells located throughout the body. The thyroid gland secretes hormones that regulate cell function throughout the body in the form of salivary hormones. There are eight endocrine glands, each with a unique tissue with endocrine function located throughout the body.

Thyroid Hormone Disorders
The thyroid gland secretes hormones that are crucial for regulating metabolism. Imbalances in thyroid hormones result in weight gain, weight loss, muscle weakness, and alterations in mood.

Osteoporosis
Bone growth and remodeling rely on the actions of osteoblasts, which deposit mineral and organic bone components, and osteoclasts, which resorb those components.

Bone Growth and Remodeling
Bone growth and remodeling rely on the actions of osteoblasts, which deposit mineral and organic bone components, and osteoclasts, which resorb those components.

Induced Pluripotent Stem Cells
Induced pluripotent stem cells (iPSCs) are created by the expression of the Yamanaka factors in somatic cells. iPSCs hold great promise for addressing transplantation in the repair of heart and other tissues damaged by ischemia.

Induced Pluripotent Stem Cells
Induced pluripotent stem cells (iPSCs) are created by the expression of the Yamanaka factors in somatic cells. iPSCs hold great promise for addressing transplantation in the repair of heart and other tissues damaged by ischemia.

Induced Pluripotent Stem Cells
Induced pluripotent stem cells (iPSCs) are created by the expression of the Yamanaka factors in somatic cells. iPSCs hold great promise for addressing transplantation in the repair of heart and other tissues damaged by ischemia.

Induced Pluripotent Stem Cells
Induced pluripotent stem cells (iPSCs) are created by the expression of the Yamanaka factors in somatic cells. iPSCs hold great promise for addressing transplantation in the repair of heart and other tissues damaged by ischemia.

Induced Pluripotent Stem Cells
Induced pluripotent stem cells (iPSCs) are created by the expression of the Yamanaka factors in somatic cells. iPSCs hold great promise for addressing transplantation in the repair of heart and other tissues damaged by ischemia.

Induced Pluripotent Stem Cells
Induced pluripotent stem cells (iPSCs) are created by the expression of the Yamanaka factors in somatic cells. iPSCs hold great promise for addressing transplantation in the repair of heart and other tissues damaged by ischemia.

Induced Pluripotent Stem Cells
Induced pluripotent stem cells (iPSCs) are created by the expression of the Yamanaka factors in somatic cells. iPSCs hold great promise for addressing transplantation in the repair of heart and other tissues damaged by ischemia.