Neural Progenitor Cells

Potent Models of Normal and Disease Neurobiology

11/19/2015


In vitro neurological research presents many challenges due to the difficulty in establishing high-yield neuronal cultures as well as batch-to-batch consistency. Human induced pluripotent stem cells (iPSCs) have a high expansion capacity and can differentiate into neurological cells types; thus, these cells hold great promise for both regenerative medicine and drug discovery. This webinar will discuss neural differentiation and touch on its roles in investigating neurodegenerative diseases and screening therapeutics. Methods for generating large quantities of neural progenitor cells (NPCs) from human fibroblast-, CD34+-, and Parkinson’s disease-derived iPSCs will then be highlighted. Finally, the generation and function of NPC reporter cell lines, created using zinc finger nuclease gene editing technology, will be examined.

Presenters

Brian Shapiro

Brian Shapiro, Ph.D.,
Scientific Content Specialist, ATCC

Brian A Shapiro, Ph.D., works to communicate the scientific breakthroughs of ATCC’s product development laboratories to the biomedical research community. Previously, he worked at Virginia Commonwealth University, where he investigated the role of pre-mRNA splicing in the multi-drug resistance of lung cancer. Dr. Shapiro attended the Medical College of Georgia, where his research focused on adrenal physiology as well as diseases of the epidermis.