ATCC ATCC Logo 0
  • Quick Order
  • Careers
  • Support

Fast Post-thaw Recovery of Cryopreserved Cells for Use in Bioassays

Poster
iStock_000000576756Medium.jpg

SLAS 2024 International Conference and Exhibition

Boston, Massachusetts, United States

February 05, 2024

Abstract

Introduction

Large-scale bioassays are frequently used in the biotechnology and pharmaceutical industries for a wide variety of testing, including drug screening, vaccine development, and quality control. There are several requirements for these systems that ensure reliability and effectiveness. Standardization, reproducibility, and automation compatibility are just a few system attributes that facilitate development of a successful bioassay. Any inconsistencies in the biological material input poses the greatest challenge to creating a robust bioassay system featuring these attributes.

Typically, the generation of sufficient biomaterial (e.g., cell lines) requires large-scale cell culture and demands extensive time and resource commitments. Additionally, long-term cell culture faces several added risks such as genetic drift, phenotypic changes, and chance of contamination. A high-content, highly standardized cell material that can be stored for optimal durations could replace the requirement for large-scale cell culture and quickly plug into a large-scale bioassay systems.

Here, we employ a fetal bovine serum (FBS)-free cryoformulation and strict process parameters to cryopreserve ATCC cells for use in assays after minimal post-thaw culture time. The thawed cells have high post-thaw viability and display similar bioassay sensitivity to cultured cells. 

Methodology

Due to their ability to mimic human monocyte and macrophage activity, THP-1 cells are used extensively in biopharmaceuticals to assess anti-inflammatory and immunomodulatory compounds. THP-1 (parent) and THP-1-NFkB-Luc2 (reporter) cells were cultured using ATCC standard protocols and then cryopreserved in a proprietary cryoformulation. The reporter cell line is a clone of THP-1 and expresses bioluminescent proteins when NFkB pathways are activated in the cells. These cells were used to quickly and sensitively assess the functionality of THP-1 cells post-thaw.

Post-thaw characterization experiments included evaluating viability and growth using an automated counting instrument. For the reporter, NFkB activation via stimulation with LPS was evaluated using a commercially available bioluminescent detection system. All experiments were performed within two-hours post-thaw.

Data

A post-thaw viability of >80% and a viable cell number of >9 million was achieved for both cell lines. There was minimal lag in post-thaw growth lag, and normal growth resumed within 48 hours. The post-thaw luciferase response of the reporter cells was >100-fold higher than the negative control, and the cells demonstrated less variability than the culture controls.

Conclusion

The cryopreserved cells demonstrated very high post-thaw viability, quick growth recovery, and similar functionality as compared to culture control cells. Further, the FBS-free cryoformulation reduced the batch-to-batch variability commonly exacerbated by the freeze concentration of constituents. These improvements address some of the long-standing pain-points around cellular work in industry. Therefore, it is feasible that cells in this thaw-and-go format can replace the need for long-term culture to save time and valuable resources.  

Download the poster to learn how we are improving post-thaw viability and functionality of cell lines.

Download

Presenter

Lukas Underwood.jpg

Lukas Underwood, PhD

Scientist, BioNexus Cryobiology, ATCC

Dr. Underwood specializes in mammalian cell preservation and characterization. He has a PhD in Mechanical Engineering and Applied Sciences from the University of Michigan with a focus in biological engineering. Lukas has extensive experience in and spectrographic and thermodynamic characterization of mammalian cell preservation and formulation development.

Dr. Underwood joined ATCC is March 2022 and is working on the development of novel preservation formats for Cell Biology products. Since joining ATCC, Dr. Underwood has collaborated with and consulted for several of the Cell Biology R&D groups located on the Gaithersburg campus.